
The above does not agree with the assertion that "with increase in blow energy the ef- 
fect of instrument geometry on efficiency of rock breakup decreases significantly..." [7, 
p. 29]. The numerical experiments performed show that with increase in blow energy one can 
in principle achieve destruction of the block material with every blow. 
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ANALYSIS OF CREEP IN A RECTANGULAR PLATE WITH A CIRCULAR: 

ORIFICE UNDER TENSION 

V. N. Solodovnikov UDC 539.376 

A finite element solution of the problem is offered using the theory of strengthening 
type creep. Because of creep the stress concentration at the edge of the orifice is reduced, 
and displacement as a function of reduced time increases at an almost constant rate. Moir~ 
type displacement isoline patterns are presented. 

Fundamental Equations. Expressions for the deformations in terms of displacements, the 
equilibrium equation, and relationships between stresses and deformations in the plane 
stressed state are taken in the form [i, 2] 

e l l  = Ul,I~ e22 ~ u2,2, 2e12 = Ul, 2 -~  z~2,1~ 

ff11,1 ~ ~12,2 = O, 012,1 @ 022,2 : O, 

en = E - ' ( o n  - -  va~2) + On, e22 = E-1(~22 - -  van)  + P22, 

el~ = (t + ~)E-1G12 + pn. 

Here E is Young's modulus, ~ is the Poisson coefficient, u i are the displacements; eij, the 
deformations; oij, the stresses; Pij are the creep deformations (i, j = I, 2) in the Cartesian 
coordinate system x I, x2; the subscripts 1 and 2 following the comma indicate partial differ- 
entiation with respect to x I and x2, respectively. 

In contrast to [3-7], to calculate plate creep we will use the strengthening type creep 
theory of [2, 8]. In the uniaxially stressed state the creep deformation p and the stress o 
as a function of time t are interrelated in this theory by an expression 

p h d p / d t  = a o  ~, (1 )  
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where k, n, a are positive constants of the material. At the initial moment t = 0 there is a 
singularity: p = 0, the creep deformation rate dp/dt increases without limit. To e~iiminate 
this singularity we transform to a new time variable, the reduced time [8] 

= [a(k + t ) t ]  m, m = l /(k + 1). ( 2 )  

From Eqs .  ( 1 )  and (2 )  we o b t a i n  

I~ i~=~% n, p = a  ~' ( # + 1 ) ~  -(h+') an ~d ~  . (3 )  
0 

The dot above a quantity indicates differentiation with respect to x. At T = 0 the deriva- 
tive ~ has a finite value a mn. For brevity we will refer to x as time below, while the de- 
rivatives with respect to �9 will be called the rates of the functions in question. 

Generalizing Eq. (3) to a planar stressed state, we write the equation 

~11 = ~ ( 2 a l l -  ~22) ,~22  = ~ ( 2 a 2 2 - - 0 1 1 ) ~ 0 1 2  = 3%ff12, (4) 

o 

(where S is the stress intensity). 

We introduce the functional 

. , ,  2(~ .... v~ ) { e ~  + 2\,e~,e22 + e~2 + 2( t  - -  v)e~.~ - -  

- -  2 I([hi + v f )~ )e j j  + (922 + vOl,) ei~ + 2(1 - -  v) [),2el2]} dxl  dx  2 - -  ~ [p(u~12 - -  uilz) + qOt,l~ + u212) ] dl.  ( 5 )  
F 

I n t e g r a t i o n  i s  c a r r i e d  o u t  o v e r  t h e  r e g i o n  ~,  o c c u p i e d  by t h e  p l a t e ,  and  a l o n g  i t s  c o n t o u r  r .  
I n  t h e  g i v e n  f u n c t i o n a l  t h e  d i s p l a c e m e n t s  a r e  v a r i e d .  The d e f o r m a t i o n s  e ~ ,  e z : ,  e12 a r e  
e x p r e s s e d  i n  t e r m s  o f  d i s p l a c e m e n t s .  The c r e e p  d e f o r m a t i o n s  p~z ,  P : : ,  P z : ,  t h e  n o r m a l  and 
t a n g e n t  s t r e s s e s  p ,  q on t h e  c o n t o u r  r a r e  d ~ f i n e d  by t h e  e x p r e s s i o n s  ( w h e r e  ~ ,  ~2 a r e  com- 
p o n e n t s  of the unit vector tangent to F) 

- - -  ~ . ~  12 

11 : - d x v ' d t ,  l ~ - - d x ~ / d l ,  dl = [(dx~)~+ (dx~)~] ~/~, 

are fixed during variation of the functional ~. 

From the condition of steady state of ~ there follow equilibrium equations, formulated in 
terms of displacements, while the expressions for p and q on F are expressed in terms of 
displacements. We will use the given functional to formulate the finite element equations. 

Formulation of the Problem. A rectangular plate with central circular orifice is placed 
under tension under creep conditions by a constant load P, uniformly distributed along its 
short edges. In view of the symmetry involved, the solutions will be found for the quarter 
of the plate depicted in Fig. I, where the plate dimensions are given wi!h reference to the 
orifice radius R, and the plate is shown divided into finite elements. 

We have the following segments of the contour for the quarter plate and boundary condi- 
tions theorem for any �9 (see Fig. i): ~)R~x~L, x~=:(l, u 2 =(), ~ ~ (!;2) x~ ~(~,~x~]l. 

R ~, p = q = O. 

Finite element formulation of the problem. We will use four-sided nine-node isopara- 
metric Lagrangian elements [9]. In all we have 105 elements with 900 unknown variables - the 
displacement components at the corners of the elements (Fig. i). 

From the condition of steady state of ~, Eq. (5), considering the specified boundary 
conditions, we obtain finite element equations in the displacements at the element nodes. 
To calculate the integrals over the area of each element we use a three-point quadratic 
Gaussian formula. On the boundaries between the elements the condition of stress continuity 
is satisfied, and at each node the sum of all applied generalized forces, defined from the 
principle of possible displacements, is taken equal to zero. 
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Differentiating the finite element equations obtained with respect to T, we arrive at 
a system of equations for calculation of the displacement rates. The coefficient matrix A 
for the unknown displacement rates in the equations coincides with the global rigidity and 
elasticity matrix. The system was solved by the compact Gaussian elimination method with 
consideration of the sysmmetry and ribbonlike nature of .the matrix A [9, i0], with the latter 
being reduced to triangular form only once in the first solution of the elasticity problem. 

Algorithm for Computation over Time. We will determine the initial elastic state of the 
plate at T = 0. We then divide T into small intervals (steps). 

In each step from T to T + AT for any unknown function v (displacements of element nodes 
and stresses in the nodes in the expressions for integration over the region ~) we use the 
values of v T to calculate the rates vT at the beginning of the step [we denote function val- 
ues by a time index (T or T + AT) to which they refer]. Then, using the values of the 

.,o 

stresses V~+AT, obtainable by Euler's expression 

a .  

we find the displacement and stress rates 9~+AT , and then use the latter to find the final 
values of the unknowns at the end of the step VT+AT = V T + (AT/2)(+ T + V~+AT)" As a result 
the stressed and deformed state of the plate at the end of the step is fully defined. 

We specify the increments in the values of the integrals in the expressions for creep 

deformation rates (4) I(T)= SSnT+dT in the step from T to T + A with the expressions 
0 

w h i c h  a r e  o b t a i n e d  by  a p p r o x i m a t i n g  t h e  f u n c t i o n  S n i n  t h e  s t e p  by  a l i n e a r  p o l y n o m i a l .  I n  
the final state after complete instantaneous unloading the stresses and displacements are 
equal to the differences of their values before loading and in the initial elastic state. 

Calculation Results. We take the Poisson coefficient v = 0,3, and the constants in the 
creep law n = 9, k = 2, so that m = i/3. We introduce the dimensionless quantities 

! t r p 

x i  = x i / R ,  u i  = E u d ( P R ) ,  "~' = "cEP m ~ - l ,  e~ i = E e ' o / P ,  (rij = a ~ / P  (i, ] = 1, 2). 

In these quantities the solution does not depend on the constants a, E, P, R. In the text 
below we will omit the primes in the symbols for the dimensionless quantities. 

In the interval 0~T~ T = 0.4 we specify a sequence of 20 steps: AT = 0.001, 0.002, 
0.004, 0.008, 0.015, 0.02, 0.025,...,0.025.~ At T = T the stress rates become less than the 
specified small quantity, the stresses and elastic deformations become practically con- 
stant, while the creep deformations continue to grow. At this moment complete instantaneous 
unloading i is carried out. We will note that the actual time t corresponding to T = T de- 
pends on P, a, E. 

The displacements as a function of �9 continue to grow at an almost constant rate [ac- 
cording to Eq. (2), the dependence of displacements on t is nonlinear]. The digits 1-4 of 
Fig. 2 denote graphs of displacements u I at points with coordinates (R, 0) and (L, 0) and u 2 
at points (0, R) and (0, H) as functions of T. 
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The stress concentration at the edge of the orifice decreases due to creep. Figure 3 
shows the change with time ~ of the stress concentration coefficient K, equal to the dimen- 
sionless magnitude of the peripheral stress K = o B = oli on the edge of the orifice at the 
point with coordinates (0, R). The quantity K decreases from K = 3.7501 at m = 0 at K = 
2.5949 at ~ = T. In [i], for an infinitely long plate (L § ~) the value K = 3.74 was given. 
The coefficient K is independent of P, a, E. 

Figure 4 shows the distribution of stress oll in the plate section x I = 0, while Fig. 5 
is the distribution of peripheral stress N = 1 - 20/~ [8 is the angle in the polar coordinate 
system (r, 8), see Fig. i] at times m = 0 (solid lines) and �9 = T before and after unloading 
(dashes and dash-dot curves, respectively). The curves are drawn through stress values 
at the central nodes on the sides of the elements, small stress discontinuities at bounded 
points between elements are smoothed (in the finite element formulation stress continuity 
conditions on the boundaries between elements are satisfied only integrally). In the area 
outside a certain vicinity of the orifice edge the stresses change only insignificantly 
during the creep process. 

Figure 6 shows isolines of axial displacements u I = i, 2,..., while Fig. 7 shows trans- 
verse stresses u 2 = -0.5, -i, -1.5 .... of the Moire pattern type [ii, 12] from top to bottom 
for three states: T = 0, and T = T before and after unloading. The isolines indicate the 
value of the stress components which are constant thereon~ 

i. 

2. 
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FRACTURE FAILURE IN THE ALLOY AMg6 

S. A. Novikov and A. I. Ruzanov UDC 539.4 

Fracture failure in construction materials is preceded by stages of generation, growth, 
and merger of microcracks of micropores. Studies of the kinetics of fracture formation under 
dynamic loading resulting from an intense blow on the specimen or its rapid heating have 
been given a great deal of attention by theoreticians and experimenters. It is well known 
that the character of failure and the value of fracture strength depend significantly on 
loading conditions, and the original state of the material. As a rule, generation of micro- 

fissures occurs in regions where microstructural defects are located. A promising direction 
in the study of dynamic failure processes is numerical computer experiment, performed using 
results of physical experiments. With a proper choice of failure model which considers the 
real process, of fracture formation, such studies permit more detailed clarification of the 
features of failure. 

The present study will offer results of studies in the above direction regarding frac- 
ture failure of the aluminum alloy AMg6. This alloy is one of the most widely used materials 
in modern technology designs, including those used under conditions of intense dynamic load- 
ing at elevated temperature. A number of studies have considered its strength characteristics 
under shock wave loading experimentally (see [I-3] and bibliography therein). In the ex- 
periments, results of which were used in the present study for numerical modeling of the frac- 
ture failure process, the specimens (80 mm diameter disks i0 mm thick) were loaded by impact 
of an aluminum plate 4 mm thick, driven to a specified velocity by a sheet charge of explo- 
sive material. A portion of the specimens studied were used as supplied (rolled), while a 
portion were annealed at 320=C for i h. Specimens were heated before loading with a radiant 
heater. After loading, sections were cut from the specimens for metallographic analysis at 
a magnification of i000 times. Typical photographs of AMg6 specimen microstructure in the 
failure generation zone are shown in Fig. 1 (a, temperture 0~ b, 550~ Over the entire 
temperature range generation of microfissures occurred at accumulations of inclusions ex- 
tended in the direction of rolling. At elevated temperatures merging of the cavities formed 
occurred primarily in a direction perpendicular to the rolling direction. Cracking along 
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